Senin, 05 September 2016

Lempeng bumi bergerak terjadilah gempa



Mari pahami gambar-gambar berikut:

Gambar 3. Bentuk potongan-potongan kerak/lempeng bumi.
Gambar 4. Ilustrasi arus konveksi sebagai penyebab bergeraknya kerak/lempeng-lempeng bumi
Dari ilustrasi gambar dapat kita pahami bahwa  arus konveksi pada mantel mendorong astenosfer dan menyebabkan bergeraknya astenosfer sehinga ikut mendorong pergeraknya lapisan litosfer yang mengambang diatasnya. Begrgeraknya astenosfer dan listosfer secara bersama-sama inilah yang disebut dengan pergerakan lempeng pada teori Lempeng  (Tektonic Plate). 

Seperti ilustrasi pada gambar 3 dan gambar 4 diketahui bahwa lempeng-lempeng bumi yang tersusun seperti permainan Puzzel aktif bergerak akibat adanya tekanan dari dalam bumi karena adanya arus konveksi dari mantel. Pergeraknya kepingan-kepingan puzzle tersebut menyebabkan adanya interaksi antar lempeng pada bagian tepi-tepinya atau pada batas lempeng (plate boundary) baik berupa tabrakan, gesekan pada bagian tepi puzzle atau bergerak saling menjauh. Uraiannya adalah sebagai berikut:
  1. Divergent, dimana lempeng-lempeng bergerak saling menjauh sehingga menyebabkan pemekaran. Disebut juga constructive boundary karena pada saat terjadi pemekaran magma naik ke permukaan mengisi bagain-bagian tepi yang kosong membentuk lapisan-lapisan batuan muda (baru).  Umum terjadi ditengah samudera. Pusat  pemekaran di tengah samudera umumnya membentuk punggungan tengah samudera yang disebut juga Mid Oceanic Ridge (MOR).  Silahkan lihat Gambar 6. Pada batas divergen akan sering terjadi gempabumi namun tidak sesering atau sehebat pada jenis batas lempeng convergen dan transform.
  2. Convergent atau saling bertabarakan, batas ini juga disebut dengan destructive boundary karena pada bagian-bagian tepi yang bertambarakan akan mengalami penghancuran (ribuan tahun loo) melalui proses patahan dan gempa bumi.
    • Collision (Kolisi), tabrakan lempeng-lempeng sejenis, misalnya benua dengan benua (seperti benua India dengan Benua Asia-Eropa (Eurasian Plate) yang membentuk pegunungan Himalaya, atau samudera dengan samudera namun jarang dijumpai di muka bumi. Gambar 5.
    Gambar 5. Collision atau tabrakan Lempeng Benua India dengan Lempeng Benua Eurasia (Asia-Eropa)
    • Subduction (Subduksi), Gambar 6, tabrakan lempenglempeng beda jenis, yaitu antara lempeng benua dengan samudera. Karena lempeng samudera lebih tipis namun berat jenisnya lebih besar (tersusun oleh bebatuan yang mengandung logam-logam berat) maka lempeng samudera akan menyelinap (subduct) masuk ke bawah kerak benua, maka bagian ujung kerak samudera yang masuk ke dalam mantel bumi akan meleleh dan lelehan ini akan naik ke permukaan bumi melalui celah celah pada kerak benua dan membentu gunungapi. Maka, di sepanjang zona subduksi ini akan terbentuk gunungapi-gunungapi aktif membentuk cincin api mediterania (Mediteranian Ring of fire) dan cincin api pasifik (Pasific Ring of Fire). Di Indonesia, Subduksi terjadi di sepanjang palung Sunda (Perairan Barat Sumatera di bawah kepulauan Nias-Mentawai hingga perairan Selatan Jawa). Gempa-gempa besar di sepanjang zona subduksi ini sebagian juga dapat  (BISA IYA BISA TIDAK) memicu Tsunami seperti yang pernah terjadi di Aceh (2004), Pagai Selatan (2010), Pangandaran (2006), Nusa Tenggara Timur dan Nusa Tenggara Barat (1992). Silahkan klik Tsunami untuk penjelasan tentang tsunami.
     
    Gambar 6. Divergent Boundary dan Convergent-Subduction Boundary.
  3. Transform atau saling bergesekan atau bersenggolan, saling bergerak searah ataupun berlawan arah secara mendatar dengan kecepatan berbeda. Batas ini sering juga disebut Conservative Boundary, Daerah ini akan sering mengalami gempabumi hingga gempabumi merusak, menghasilkan patahan-patahan besar dan kecil di sekitar batas lempeng. Contoh dari Transform Boundary ini adalah batas Lempeng Samudera Pasifik dengan Lempeng Benua Amerika Utara yang menghasilkan patahan besar San Andreas (San Andreas Fault) yang terkenal.
    Gambar 7. Transform Boundary, Batas trasnsform lempeng Samudera Pasifik dan Lempeng Benua Amerika Utara, menghasilkan Patahan San Andreas. Kedua Gambar tanpa perbandingan skala. 
Demikianlah Penjelasan umum dan mendasar kenapa terjadi pergerakan lempeng bumi yang bertanggung jawab terhadap proses terjadinya gempabumi.


Note : All pictures taken from internet and some of them edited by writer.


(ysr)

Rabu, 28 Mei 2014

Ring of Fire, Cincin Api

Gambar 1. Batas lempeng-lempeng tektonik dan sebaran gunung api. (gambar dari internet)


Ring of fire atau cincin api merupakan suatu jalur di muka bumi dimana di area tersebut terdapat sejumlah besar gunung api aktif dan kejadian-kejadian gempa bumi sebagai hasil dari aktifitas tektonik atau pergerakan lempeng-lempeng tektonik di muka bumi (gambar 1). Sebagai area yang sangat dipengaruhi oleh aktifitas tektonik maka daerah ini merupakan daerah rawan gempa bumi dan mayoritas gempa-gempa merusak terjadi disempanjang jalur ini. Terdapat dua Jalur cincin api atau ring of firer di muka bumi, yaitu Circum Pacific Ring of Fire dan Circum Mediterranea Ring of Fire. 

Gambar 2. Ring of Fire, Cincin api Sircum Pasific dan Mediterania

Gambar 3. Cincin api Sirkum Pasifik, di sekeliling Samudera Pasifik.
  1. Circum Pasific Ring of Fire (Cincin api lingkar Pasifik),  jalur di sepanjang batas pertemuan lempeng Samudaera Pasific dengan Benua Amerika Utara dan Selatan di Sisi Timur dan Benua Eropa-Asia (Eurasi di sisi Barat). 90% gempabumi dan 81% gempabumi besar terjadi pada jalur ini. Gunung api di Indonesia Timur yaitu Sulawesi hingga Maluku termasuk bagian dari sirkum pasifik.
  2. Circum Mediterranea Ring of Fire  (Cincin api lingkar Mediterania), jalur ini berada disepanjang sabuk Alpid (Alpide belt), Asia-Eropa, yang terbentang dari Jawa-Sumatera, pegunungan Himalaya, Mediterania hingga Pematang Atlantik (Mid-Atlantic Ridge, atau Mid Oceanic Ridge of Atalntic). 5–6% gempabumi and 17% gempabumi besar duni terjadi pada jalur ini. Merupakan hasil dari :
    1. subduksi Lempeng Hindia-Australia dengan Lempeng Benua Eurasia (Eropa Asia), membentuk jajaran pegunungan  dan gunung api di Selatan Indonesia hinga Sumatera.
    2. Kolisi (Collision) Benua India dengan Asia, membentuk Pegunugan Himalaya
    3. Complex Tectonic Boundaries of Mediterranean Sea, yang merupakan batas pertemuan lempeng Benua Afrika dengan Benua Eropa, membentuk pegunungan vulkanik Appennini di Italia dan Alps di Peracis, Swis dan Austria. Pada wilayah ini terbentuk beberapa gunung api  terkenal diantaranya Gunung Etna dan Gunung Vesuvius.

Gambar 4. Sabuk Alpid (Alpide belt), membentang dari Jawa, Sumatera, Asia Tenggara, Pegunungan Himalaya hingga Mediterania.

disarikan dari berbagai sumber..

(ysr)

MENGAPA ADA GUNUNG API

Pembentukan gunung api erat kaitannya dengan aktifitas tektonik lempeng dan naiknya magma ke permukaan bumi, lihat MENGAPA GEMPA.....? Bercerita tentang lempeng tektonik bumi. Setiap aktifitas tektonik yang berbeda menghasilkan karakteristik gunung api yang berbeda pula. Berikut adalah tiga penyebab terbentuknya gunung api, lihat gambar 1.
 
Gambar 1. Proses pembentukan gunung api pada zona subduksi, hotspot dan zona divergen.

Gunung api pada zona Subduksi

Zona Subduksi adalah tempat dimana bertemunya lempeng benua dengan lempeng samudera dimana lempeng samudera menyusup ke bawah lempeng benua. Bagian ujung lempeng samudera yang menghujam ke dalam lapisan mantel bumi akan mengalami pelelehan dan menambah volume magma di dalam astenosfer. Tekanan yang diberikan akibat pelelehan ini juga menyebabkan naiknya magma menuju permukaan kerak bumi melaui celah-celah atau retakan-retakan pada kerak bumi sehinga membentuk kantong-kantong magma. Kantong-kantong magma di dalam kerak bumi inilah yang nantinya menjadi dapur-dapur magma pemasok material gunung api. Peningkatan aktifitas tektonik pada zona subduksi dapat meningkatkan aktifitas gunung api.

Komposisi magma di dalam mantel bumi awalnya bersifat basa (basaltic), namun ketika bercampur dengan lelehan batuan kerak benua yang bersifat asam, maka pada umumnya gunung api yang dihasilkan di sepanjang sabuk zona subduksi akan bersifat intermediet menghasilkan batuan gunung api andesitik, dengan karakteristik erupsi berupa lelehan lava kental, letusan kuat dan hembusan awan abu. Muntahan material berupa perselingan lelehan lava dan piroklastik dari letusan dan hembusan yang memuntahkan batuan, kerikil, pasir dan abu akan menghasilkan gunung api berlapis atau strato volcano, lihat BENTUK-BENTUK GUNUNG API
BENTUK-BENTUK GUNUNGAPI
BENTUK-BENTUK GUNUNGAPI
.

Gunung api Hotspot

Gunung api hotspot dibentuk pada titik-titik panas yang muncul di tengah-tengah kerak samudera. Magma yang bersifat basaltik muncul kepermukaan membentuk tameng-tameng lava yang berlapis hingga muncul di atas permukaan laut membentuk daratan vulkanik dan gunung api di tengah samudera. Sifat lava yang encer dan cepat membeku membentuk gunung api api tameng (Shield Volcano). Kepulauan vulkanik Hawai (gambar 2.) dan Galapagos (gambar 3) adalah hasil dari proses hotspot.

Gambar 2. Kepulauan Hawai dan prorses pembentukannya.

Gambar 3. Pembentukan Kepulauan Galapagos

Gunung api zona Divergen

Zona Divergen adalah zona dimana lempeng-lempeng kerak bumi bergerak berlawanan arah atau saling menjauh akibat adanya tekanan dari arus konveksi magma pada astenosfer. Proses ini disebut dengan pemekaran (spreading). Pemekaran ini meninggalkan celah celah kosong (rekahan/fracture) yang membuka ruang bagi magma untuk naik ke permukaan kerak.  Magma yang bersifat basaltik dan encer membentuk tameng-tameng lava basa di sepanjang jalur pemekaran.
  1. Di tengah Samudera proses ini akan membentuk pematang-pematang tengah samudera (Mid Oceanic Ridge, MOR), gambar 4. Disepanjang MOR akan terbentuk gunung api - gunung api bawah laut dan sebagian muncul di permukaan laut membentuk daratan vulkanik dengan gunung api aktifnya. Pembentukan gunung api pada jalur ini juga dapat berkembang menjadi strato volcano seperti Gunung Pico di Kepulauan Azuros, Protugal, gunung Eyjafjoelldi dan gunung Grimsvotn  di pulau vulkanik Islandia (Iceland), lihat gambar 4.
    Gambar 4. Letak Kepulauan vulkanik Azuros dan Islandia pada Mid-Atlantic Ridge atau Pematang Samudera Atlantik
  2. Tidak hanya di samudera, pemekaran atau rifting atau zona divergen juga terdapat di Benua Afrika (gambar 5). Pemekaran ini akan menjadi cikal bakal pemisahan atau pembelahan benua Afrika menjadi dua bagian, Jalur-jalur pemekaran membentuk lembah-lembah yang disebut dengan rifting valey menjadi jalur sungai besar dan danau di Africk (Danau Victoria). Jalur-jalur yang dibentuk oleh pemekaran akan meningalkan fractures atau rekahan yang akan terisi oleh magma. Sepertihalnya di sepanjang MOR, magma yang naik ke permukaan di sepanjang jalur pemekaran juga akan membentuk tameng-tameng lava gunung api (shield volcano) dan dapat berkembang menjadi strato volcano, diantarnya yang terkenal adalah Gunung Kenya dan Gunung Kilimanjaro (Gunung api tertinggi di dunia) di Tanzania. Seperti halnya gunung api yang terbentuk pada zona pemekaran/spreading/divergen, maka pada umumnya Gunung Kenya dan Kilimanjaro bertipe basaltik meskipun berbentuk starto volcano, lihat BENTUK-BENTUK GUNUNG API.

Gambar 5. Divergen, pemekaran benua Afrika dan sebaran gunung api di sepanjang pusat pemekaran.

Disarikan dari berbagai sumber
(ysr)

BENTUK-BENTUK GUNUNG API


Strato Volcano/Composite Volcanoes (gunung api berlapis)

Lebih dari separo gunung api aktif di dunia bertipe Strato Volcano, ~60%. Umumnya berkomposisi intermediet (Andesitik-Dasitik) hinga asam, namun tidak menutup kemungkinan bertipe basaltik. Magma yang lebih kental dibandingkan dengan yang bertipe basaltik menghasilkan tekanan yang lebih besar dalam kantong-kantong magma sehingga gunung api tipe ini bersifat eksplosif atau dapat menghasilkan letusan yang hebat. Karakterisitik erupsi adalah campuran lelehan lava (erupsi lelehan, efusif) dan erupsi ledakan (Explosive Eruption) yang menghasilkan materail piroklastik yaitu berbagai ukuran blok batuan hingga pasir, gas dan abu. Campuran Karakteristik erupsi ini menghasilkan perlapisan perselingan antara lava dan material piroklastik (batuan, kerikil, pasir dan abu) sehingga disebut juga dengan Composite Volcanoes.
Gambar 1. Strato volcano. (gambar dari internet)
Gunung api bertipe strato volcano sangat erat kaitannya dengan aktifitas tektonik di zona subduksi, dimana lempeng samudera yang menyusup di bawah lempeng benua mengalami pelelehan secara parsial sehingga meningkatkan aktifitas magmatisme di astenosfer. Lelehan kerak samudera naik kepermukaan melalui celah-celah pada lempeng benua, membentuk kantong-kantong magma di dalam kerak dan memicu terbentuknya gunung api di permukaan. Peningkatan aktifitas tektonik dan kegempaan di sepanjang zona subduksi memilik konsekuensi adanya peningkatan magmatisme di sekitar gunung api sehingga dapat juga memicu peningkatkan aktifitas gunung api. Korelasi lanjutannya adalah dengan peningkatan kegempaan di zona subduksi dapat memicu naiknya status gunung api, lihat MENGAPA ADA GUNUNG API.

Gunung api - gunung api di Indonesia berasosiasi dengan aktifitas tektonik pada zona subduksi sehingga Gunung api di Indonesia umumnya berbentuk Strato volcano. lihat


Shield Volcano

Disebut Shield volcano karena bentuknya yang menyerupai tameng (shield). Hal ini disebabkan oleh erupsi lava basaltik yang encer saat keluar di permukaan mengalir ke segala arah mengikuti topografi di sekitarnya, bagian luarnya cenderung cepat mendingin di bandingkan bagian bawah sehingga kadang saat bagian permukaan aliran lava sudah membeku tapi bagian dalamnya masih mengalir sehingga meninggalkan saluran-saluran dalam tubuh lava itu sendiri. karena lava mengalir cepat dan mendingin dengan cepat maka cenderung shield volcano membentuk topografi gunung api yang landai dengan penyusun utamanya adalah lava itu sendiri. Gunung api temeng umum terdapat di daerah-daerah hotspot seperti hawai dan galapagos, dan pusat pemekaran di punggungan tengah samudera seperti di sepanjang Mid-Atlantic Ridge.
Gambar 2. Shield Volcano dan proses pembentukannnya

Cinder Cone Volcano

cone = Kerucut, Cinder=arang atau abu sisa pembakaran. Kerucut cinder
Dari arti kata di atas dapat kita simpulkan bahwa cinder cone adalah bentuk gunung api yang terbentuk dari tumpukan material piroklastik. Tumpukan menyebar di sekeliling pusat erupsi, melingkar seperti kerucut dengan kemiringan terjal, bagian tengah atau pusat erupsi cenderung berbentuk mangkok. 

Material piroklastik terbentuk dari lava basaltik yang encer menyembur ke udara. Karena sifatnya yang encer dan cepat membeku, maka bom-bom vulkanik dapat terbentuk seketika baik saat masih di udara maupun saat jatuh di sekitar pusat semburan. Batuan piroklastik yang terbentuk umumnya berstruktur skoria (berlubang-lubang, atau berpori banyak) akibat pelepasan gas yang cepat pada bom vulkanik atau lava yang bersifat encer.

Gambar 3. Cinder cone Volcano.

disarikan dari berbagai sumber
(ysr)

Kamis, 22 Mei 2014

Memahami Penanggulangan Bencana secara sederhana

Penanggulangan Bencana sebagai satu-satu alat dalam upaya mitigasi dan pengurangan dampak  atau risiko bencana saat ini bukan lagi menjadi tanggung jawab pemerintah semata, sudah menjadi bagian yang tak terpisahkan dari aktifitas pemerintahan, masyarakat dan dunia usaha. Plus, ditambah dengan lahirnya UU no 24 tahun 2007 maka Penanggulangan bencana telah berkekuatn hukum tetap dan harus diterapkan dalam kehidupan berbangsa dan bernegara dalam kehidupan sehari-hari, ber"dunia usaha", industri bahkan pemerintahan. Penanggulangan bencana tidak lagi menjadi urusan ketika terjadi bencana (respon bencana, tanggap darurat) saja, namun merupakan kegiatan yang terintegrasi saat tidak ada bencana, ketika ada potensi bencana, saat bencana bahkan paska bencana, sehingga muncullah istilah Siklus Penanggulangan Bencana.

A. Saat tidak ada bencana


    Saat tidak ada bencana kita sering kali tidak memperhitungkan atau tidak tahu keadaan-keadan berisiko yang ada di lingkungan kita bahkan dalam pekerjaan-pekerjaan ringan sekalipun, misalkan saat berkendaran roda dua tanpa menggunakan helm, ini menjadi faktor resiko yang sering kita remehkan. Dengan kata lain kita dapat menyebukan bahwa saat tidak ada bencana adalah zona aman yang membuat kita lalai dari dampak yang dapat merugikan.
    Mempertimbangkan penyataan diatas maka kita perlu mengenali potensi-potensi bahaya yang ada disekitar kita dan faktor-faktor resiko yang akan meningkatkan potential looses baik untuk diri kita maupun lingkungan di sekitar kita. Berikut adalah beberapa hal yang perlu kita lakukan pada saat berada pada zona aman atau saat tidak ada bencana:
  1. Mengenali potensi bahaya atau bencana yang ada disekitar kita, baik yang bersifat alamiah, hasil dari perbuatan atau kegiatan atau budaya manusia, maupun dampak dari penggunaaan teknologi. Pada tahap lanjut barangkali dapat dilakukan pemetaan potensi bahaya atau bencana. lihat Potensi Bencana.
  2. Mengenali faktor-faktor kerentanan yang dapat meningkatkan risko atau dampak misalnya faktor kemampuan kita secara manusiawi, kemampuan ekonomi, karakteristik dan budaya kita secara individu maupun masyarakat, ketersediaan infrastruktur dalam membentengi kita dari bencana, termasuk faktor pengetahuan dan pengalaman.
  3. Peningkatan upaya proteksi untuk mencegah adanya dampak yang meluas dari bencana yang mungkin dapat terjadi, misalnya dengan peningkatan pengetahuan dan pemahaman tentang bencana dan apa yang harus dilakukan dalam mengantisipasi bencana, memperkuat dan memperbanyak infrastruktur dalam penanggulangan bencana, cadangan ekonomi dan bahan-bahan kebutuhan pokok sebagai baffer stock jika terjadi bencana, sistem pengairan, air bersih, sanitasi yang baik, dan sebagainya.

B. Ketika ada Potensi Bencana

    Fase ini disebut juga dengan fase siap-siaga dimana kita sudah mengenali adanya potensi bahaya atau bencana yang ada di disekitar kita, namun ada kemungkinan atau diyakinai bahwa potensi itu menjadi ancaman nyata yang suatu saat pasti terjadi, menunggu waktu tanpa dapat dicegah. Hal ini tentunya telah melalui pengamatan yang mendalam dan berdasar atau melalui sejumlah kajian atau penelitan ilmiah menurut disiplin ilmu tertentu dan dapat dipertangungjawabkan. Misalnya menurut pengamatan akan terjadi longsor pada sebuh bukit yang dapat membahayakan penduduk di bawahnya, atau daerah tertentu adalah daerah rawan gempa yang pasti akan terjadi gempa besar  pada waktu yang tidak dapat tiperhitungkan, atau menurut kajian geologi suatu daerah dapat saja dilanda tsunami jika terjadi gempa besar di laut, atau adanya informasi gunung akan meletus, dan sebagainya.

    Pengetahuan, data dan informasi-informasi semacam ini akan menjadi acuan dalam menentukan sikap atau langkah-langkah yang mutlak harus dilakukan termasuk persiapan bekal dan perlengkapan agar kerugian atau risiko bencana dapat ditekan. Intinya pada fase ini kita sedang mempersiapkan diri untuk menghadapi bahaya yang akan terjadi, akan kah dihadang atau dihindari, tentunya keduanya memiliki konsekuensi dalam potensial looses atau tindakan yang harus dilakukan, pada fase inilah disusun rencana kontinjensi.

C. Saat Bencana

    Pada Fase ini seluruh pihak harus benar-benar patuh terhadap instruksi evakuasi, menghindar atau menjauh dari daerah bahaya. Kesempatan untuk menyelamatkan aset mungkin sangat tipis atau malah tidak sempat lagi, sehingga aset-aset dan jiwa yang selamat sangat tergantung dari persiapan kita sebelum bencana benar-benar terjadi. Jumlah kerugian sangat tergantung dari tindakan yang dilakuan saat fase siaga. Yang perlu diperhatikan adalah jangan sampai ada penambahan korban dan kerugian. Penangan korban dan pengungsi secara tepat mutlak dilakukan. 

D. Pasca Bencana

    Setelah kejadian bencana merupakan face pemulihan dan pembangunan kembali aset-aset yang rusak dan hacur akibat bencana. Seringkali bencana  menimbulkan dampak yang dalam terhadap masyarakat sehinga perlu rehabilitasi mental dengan kegiatan-kegiatan sosial yang menghibur dan dapat menyembuhkan trauma paling tidak dapat menghilangkan rasa takut dan was-was atau penyakit-panyakit kejiwaan lainnya.


Sebagai bagian dari sebuah bangsa, apakah kita dari unsur pemerintahan, dunia usaha atau masyarakat sebagai individu ataupun berkelompok (ORMAS, NGO), tentu kita dapat memposisikan diri dan mengambil peran dan tindakan sesuai dengan porsi, tugas dan wewenang dalam siklus Penanggulangan Bencana, dan yang perlu ditingkatkan adalah adanya jaringan aktifitas yang terkoordinasi dalam ketiga unsur tersebut sehinga secara bersama-sama terjalin kerjasama yang erat, harmonis dan berkesinambungan.

(ysr)

Rabu, 21 Mei 2014

DAERAH HENING GEMPA (Seismic Gap)



Secara faktual dan teori umum geologi, daerah-daerah patahan dan daerah pertemuan lempeng (baik subduksi dan kolisi maupun transform) merupakan zona gempa yang akan mengalami gempa-gempa kecil maupun besar  sesuai dengan energi atau tekanan yang tersimpan di di dalamnya. (lihat MENGAPA GEMPA  dan gambar 1). Namun yang perlu kita pahami adalah bahwa dalam satu jalur zona gempa terdapat  segmen-segmen atau blok-blok aktif dengan simpanan energy berbeda dan kecepatan pergeseran yang berbeda-beda pula, artinya bahwa blok-blok tersebut tidak bergerak secara bersamaan, sehingga intensitas gempa setiap blok akan berbeda berdasarkan interval waktu tertentu (50 tahun, 100 tahun, 200 tahun, dan sebagainya), lihat MENGAPA ADA TSUNAMI (2) .

Gambar 1. Peta Tektonik dan Zona Gempa Indonesia (taken from Internet)
Seiring dengan pernyataan tersebut dapat disimpulkan bahwa ada kalanya suatu blok tidak bergerak dalam jangka waktu tertentu, atau dengan kata lain blok yang bergerak tersebut tidak mengalami gempa atau jarang sekali gempa dalam kurun waktu tertentu. Zona dengan karaktersitik seperti inilah yang disebut Seimic Gap Zone atau zona hening gempa. Semakin lama suatu blok tidak bergerak atau gempa maka energi yang tersimpan di dalamnya juga akan semakin besar, sehingga zona-zona hening gempa (seismic gap) tersebut menjadi zona berpotensi besar menyebabkan gempa merusak dengan skala magnitude besar (>7 SR).

Di Indonesia, setidaknya ini dalam hitungan saya, berdasarkan data gempa 1900 – 2013, masih terdapat 9 zona seismic gap (lihat gambar 1), sebagian sudah menghasilkan gempa besar seperti Aceh (2004), Nias (2005), Pangandaran (2006), dan Pagai (2010). Berikut daftar seismik gap  terkini:

  1. SG1, Zona subduksi, Mencakup kawasan P. Siberut, P. Sipora dan Selatan Kep. Batu. Zona ini merupakan bagian dari Segmen Megathrust Mentawai , Subsegmen Siberut.
  2. SG2, Subduksi, Selatan Selat Sunda dan P. Krakatau, Segmen ini bisa jadi juga akan menghasilkan peristiwa  letusan Gunung Krakatau 1883 yang menghasilkan tsunami hinga Lampung dan Banten.
  3. SG3, Subduksi, Selatan Jawa Tengah
  4. SG4, Subduksi, Selatan Bali
  5. SG5, Subduksi Laut Savu, NTT
  6. SG6, Subduksi, Timor Timur
  7. SG7, Subduksi, Timur Laut Banda, Kep. Kai dan Tanimbar
  8. SG8, Sesar Transform Sula-Sorong, Kep. Sula
  9. SG9, Sesar Transform Sula-Sorong, Laut Halmahera-Kep. Raja Ampat.

Gambar 2. Peta Seismic gap berdasarkan data gempa 1900 - 2013 dari USGS.

(ysr)